elektrischer Strom					
Stromstärke und Ladung: $\mathbf{I} = \frac{\Delta \mathbf{Q}}{\Delta t}$	elektrischer Widerstand: $R = \frac{U}{I}$	Gesetz von Ohm: Bei konstanter Temperatur sind U und I proportional, d.h. R = const.			
Hintereinanderschaltung von Widerständen: $R_{\text{Ersatz}} = R_1 + R_2 +$	Parallelschaltung von Widerständen: $\frac{1}{R_{\text{Ersatz}}} = \frac{1}{R_1} + \frac{1}{R_2} + \dots$	idealer Transformator mit n_p Primärund n_s Sekundärwindungen $\frac{U_p}{U_s} = \frac{n_p}{n_s}$			

	Dichte, Kräfte			
Dichte: _ m	Gewichtskraft:	Federkraft (Hooke):	Gleitreibungkraft:	
$\rho = \frac{1}{V}$	$F_G = m \cdot g$	$F = D \cdot s$	$F_R = \mu \cdot F_N$	
Hangabtriebs- und Normalkraft an einer		Luftreibungskraft bei turbulenter Strömung:		
schiefen Ebene mit dem Neigungswinkel $lpha$:		$F_{R} = \frac{1}{2} c_{W} \cdot \rho_{L} \cdot A \cdot v^{2}$		
$F_{H} = F_{G} \cdot \sin \alpha$ $F_{N} = F_{G} \cdot \cos \alpha$		c _W : Luftwiderstandsbeiwert; ρ _L : Luftdichte; A: Querschnittsfläche; v: Geschwindigkeit		

Kraft und Bewegung			
Grundgesetz der Mechanik (Newton II):	konstant beschleunigte Bewegung ($a = const$)		
$\mbox{\bf F} = \mbox{\bf m} \cdot \mbox{\bf a}$ Dabei ist $\mbox{\bf a} = \frac{\Delta \mbox{\bf V}}{\Delta \mbox{\bf t}}$ die Beschleunigung des Körpers.	mit Anfangsgeschwindigkeit v_0 $v = v_0 + a \cdot t$ $s = v_0 \cdot t + \frac{1}{2} a t^2$ $v^2 = v_0^2 + 2 a s$		

	Energie		
kinetische Energie:	potentielle (Höhen-)Energie:	Spannenergie:	
$E_{kin} = \frac{1}{2} mv^2$ $E_{pot} = m \cdot g \cdot h$		$E_{sp} = \frac{1}{2} Ds^2$	
Änderung der inneren Energie: mechanische Arbeit:		elektrische Arbeit:	
$\Delta E_{i} = c \cdot m \cdot \Delta \vartheta$	$W = F \cdot s$	$W_{el} = U \cdot I \cdot t$	
Leistung: $P = \frac{W}{t}$ Wirkungsgrad: $\eta = \frac{W_{nutz}}{W_{zu}}$ Einsteins Formel: $E = mc$			
Energieerhaltung: Im abgeschlossenen System ist E _{cesamt} = const.			

Energieerhaltung: Im abgeschlossenen System ist $E_{gesamt} = const.$

Impuls		
$p=m\cdotv$	$F = rac{\Delta p}{\Delta t}$	Impulserhaltung: Im abgeschlossenen System ist $p_{gesamt} = const.$

	Temperatur, Druck, ideales Ga	S	
Kelvin- und Celsius-Temperatur:	Druck: $p = \frac{F}{}$	ideales Gas:	$\frac{\mathbf{p} \cdot \mathbf{V}}{\mathbf{v}} = \mathbf{const}$
T(in K) = 9(in °C) + 273	P A		Τ σοιιστ

Gravitation, Planetenbewegung			
Gravitationsgesetz: Kepler I: Kepler II: Kepler III:			
$F = G \cdot \frac{m_1 \cdot m_2}{r^2}$	Die Planetenbahnen sind Ellipsen mit dem Zentral- körper in einem Brennpunkt.	Der Fahrstrahl überstreicht in gleichen Zeitabschnitten gleich große Flächenstücke.	$\frac{T_1^2}{T_2^2} = \frac{a_1^3}{a_2^3}$

harmonische Schwingung			
Auslenkung:	$y = A \cdot \sin(\omega t)$ oder $y = A \cdot \cos(\omega t)$	$mit \omega = 2\pi \cdot f = \frac{2\pi}{T}$	
rücktreibende Kraft: $F = -D$	Federpendel: $T = 2\pi \cdot \sqrt{\frac{m}{D}}$	Fadenpendel: $T = 2\pi \cdot \sqrt{\frac{L}{g}}$	

gleichförmige Kreisbewegung			
Winkelgeschwindigkeit: Umfangsgeschwindigkeit: Zentripetalkraft:			
$\omega = 2\pi \cdot f = \frac{2\pi}{T}$	$v = \omega \cdot r$	$F_Z = m\omega^2 r = \frac{mv^2}{r}$	

Wellen, Quanten					
Für alle Wellen gilt:					
$c = \lambda \cdot f$	Maxima: $\Delta s = k \cdot \lambda$; $k = 0, 1, 2,$ Minima: $\Delta s = (k - \frac{1}{2}) \cdot \lambda$; $k = 1, 2, 3$ $E_{ph} = h \cdot f = \frac{h \cdot c}{\lambda} = \frac{1,24 \cdot 10^{-6} \text{ eVm}}{\lambda}$				
	Minima: $\Delta S = (k - \frac{1}{2}) \cdot \lambda$; $k = 1, 2, 3,$ $C_{Ph} = H \cdot I = \frac{\lambda}{\lambda} = \frac{\lambda}{\lambda}$				

	Formelsymbole, Maßeinheiten				
_	Beschleunigung	[m/s²]	Q	elektrische Ladung	[C = As]
а	große Halbachse einer Bal	nnellipse [m]	r	Radius, Abstand	[m]
Λ	Flächeninhalt	[m²]	æ	elektrischer Widerstand	$[\Omega = V/A]$
Α	Amplitude	[m]	S	Weg, Ort, Federdehnung	[m]
	spezifische Wärmekapazi	tät [J/kg·K]	4	Kelvin-Temperatur	[K]
С	Wellenausbreitungsgesch	windigkeit [m/s]	•	Periodendauer	[s]
D	Federkonstante	[N/m]	כ	elektr. Spannung	[V]
Е	Energie	[J = Nm = VAs]	>	Geschwindigkeit	[m/s = 3,6 km/h]
F	Kraft	$[N = kg \cdot m/s^2]$	V	Volumen	[m³]
f	Frequenz	[Hz = 1/s]	W	Arbeit	[J]
h	Höhe	[m]	У	Auslenkung	[m]
I	elektrische Stromstärke	[A]	η	Wirkungsgrad	[%]
L	Fadenlänge	[m]	λ	Wellenlänge	[m]
m	Masse	[kg]	μ	Reibungszahl	[-]
Р	Leistung	[W = J/s]	ρ	Dichte	[kg/m³]
_	Impuls	[kg·m/s]	в	Celsius-Temperatur	[°C]
р	Druck	$[pa = N/m^2 = 10^{-5} bar]$	ω	Winkelgeschwindigkeit	[1/s]

Naturkonstanten, astronomische Größen			
Ortsfaktor (Europa): $g = 9.81 \text{N/kg}$	Gravitationskonstante: $G = 6.67 \cdot 10^{-11} \text{Nm}^2/\text{kg}^2$		
Elementarladung: $e = 1,60 \cdot 10^{-19} \text{ As}$	atomare Masseneinheit: $u = 1,66 \cdot 10^{-27} \text{ kg}$		
Lichtgeschwindigkeit: $c = 3.00 \cdot 10^8 \text{ m/s}$	Planck-Konstante: $h = 6.63 \cdot 10^{-34} \text{ Js}$		
Astronomische Einheit: $AE = 149,6 \cdot 10^9 \text{ m}$	mittlerer Erdradius: $r_E = 6370 \text{ km}$		

Vorsätze zu Maßeinheiten															
n Nand	10 ⁻⁹	μ Mikro	10 ⁻⁶	m	Milli	10-3	k	Kilo	10 ³	М	Mega	10 ⁶	G	Giga	10 ⁹